We use Fourier multiplier theorems to establish maximal regularity results for a class of integro-differential equations with infinite delay in Banach spaces. Concrete equations of this type arise in viscoelasticity theory. Results are obtained for periodic solutions in the vector-valued Lebesgue and Besov spaces. An application to semilinear equations is considered.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-1-3, author = {Valentin Keyantuo and Carlos Lizama}, title = {Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces}, journal = {Studia Mathematica}, volume = {166}, year = {2005}, pages = {25-50}, zbl = {1073.45008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-1-3} }
Valentin Keyantuo; Carlos Lizama. Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces. Studia Mathematica, Tome 166 (2005) pp. 25-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-1-3/