We investigate the weak spectral mapping property (WSMP) , where A is the generator of a ₀-semigroup in a Banach space X, μ is a measure, and μ̂(A) is defined by the Phillips functional calculus. We consider the special case when X is a Banach algebra and the operators , t ≥ 0, are multipliers.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm167-3-3,
author = {Eva Fa\v sangov\'a and Pedro J. Miana},
title = {Spectral mapping inclusions for the Phillips functional calculus in Banach spaces and algebras},
journal = {Studia Mathematica},
volume = {166},
year = {2005},
pages = {219-226},
zbl = {1080.47017},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm167-3-3}
}
Eva Fašangová; Pedro J. Miana. Spectral mapping inclusions for the Phillips functional calculus in Banach spaces and algebras. Studia Mathematica, Tome 166 (2005) pp. 219-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm167-3-3/