H functional calculus for sectorial and bisectorial operators
Giovanni Dore ; Alberto Venni
Studia Mathematica, Tome 166 (2005), p. 221-241 / Harvested from The Polish Digital Mathematics Library

We give a concise exposition of the basic theory of H functional calculus for N-tuples of sectorial or bisectorial operators, with respect to operator-valued functions; moreover we restate and prove in our setting a result of N. Kalton and L. Weis about the boundedness of the operator f(T,...,TN) when f is an R-bounded operator-valued holomorphic function.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:285117
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm166-3-2,
     author = {Giovanni Dore and Alberto Venni},
     title = {$H^{$\infty$}$ functional calculus for sectorial and bisectorial operators},
     journal = {Studia Mathematica},
     volume = {166},
     year = {2005},
     pages = {221-241},
     zbl = {1097.47017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm166-3-2}
}
Giovanni Dore; Alberto Venni. $H^{∞}$ functional calculus for sectorial and bisectorial operators. Studia Mathematica, Tome 166 (2005) pp. 221-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm166-3-2/