We give a concise exposition of the basic theory of functional calculus for N-tuples of sectorial or bisectorial operators, with respect to operator-valued functions; moreover we restate and prove in our setting a result of N. Kalton and L. Weis about the boundedness of the operator when f is an R-bounded operator-valued holomorphic function.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm166-3-2, author = {Giovanni Dore and Alberto Venni}, title = {$H^{$\infty$}$ functional calculus for sectorial and bisectorial operators}, journal = {Studia Mathematica}, volume = {166}, year = {2005}, pages = {221-241}, zbl = {1097.47017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm166-3-2} }
Giovanni Dore; Alberto Venni. $H^{∞}$ functional calculus for sectorial and bisectorial operators. Studia Mathematica, Tome 166 (2005) pp. 221-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm166-3-2/