The topological entropy versus level sets for interval maps (part II)
Jozef Bobok
Studia Mathematica, Tome 166 (2005), p. 11-27 / Harvested from The Polish Digital Mathematics Library

Let f: [a,b] → [a,b] be a continuous function of the compact real interval such that (i) cardf-1(y)2 for every y ∈ [a,b]; (ii) for some m ∈ ∞,2,3,... there is a countable set L ⊂ [a,b] such that cardf-1(y)m for every y ∈ [a,b]∖L. We show that the topological entropy of f is greater than or equal to log m. This generalizes our previous result for m = 2.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:284616
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm166-1-2,
     author = {Jozef Bobok},
     title = {The topological entropy versus level sets for interval maps (part II)},
     journal = {Studia Mathematica},
     volume = {166},
     year = {2005},
     pages = {11-27},
     zbl = {1058.37025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm166-1-2}
}
Jozef Bobok. The topological entropy versus level sets for interval maps (part II). Studia Mathematica, Tome 166 (2005) pp. 11-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm166-1-2/