On coefficients of vector-valued Bloch functions
Oscar Blasco
Studia Mathematica, Tome 162 (2004), p. 101-110 / Harvested from The Polish Digital Mathematics Library

Let X be a complex Banach space and let Bloch(X) denote the space of X-valued analytic functions on the unit disc such that sup|z|<1(1-|z|²)||f'(z)||<. A sequence (Tₙ)ₙ of bounded operators between two Banach spaces X and Y is said to be an operator-valued multiplier between Bloch(X) and ℓ₁(Y) if the map n=0xz(T(x)) defines a bounded linear operator from Bloch(X) into ℓ₁(Y). It is shown that if X is a Hilbert space then (Tₙ)ₙ is a multiplier from Bloch(X) into ℓ₁(Y) if and only if supkn=2k2k+1||T||²<. Several results about Taylor coefficients of vector-valued Bloch functions depending on properties on X, such as Rademacher and Fourier type p, are presented.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:284807
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm165-2-1,
     author = {Oscar Blasco},
     title = {On coefficients of vector-valued Bloch functions},
     journal = {Studia Mathematica},
     volume = {162},
     year = {2004},
     pages = {101-110},
     zbl = {1067.46039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm165-2-1}
}
Oscar Blasco. On coefficients of vector-valued Bloch functions. Studia Mathematica, Tome 162 (2004) pp. 101-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm165-2-1/