We give biorthogonal system characterizations of Banach spaces that fail the Dunford-Pettis property, contain an isomorphic copy of c₀, or fail the hereditary Dunford-Pettis property. We combine this with previous results to show that each infinite-dimensional Banach space has one of three types of biorthogonal systems.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm165-1-7, author = {Michael A. Coco}, title = {Biorthogonal systems in Banach spaces}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {81-100}, zbl = {1060.46009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm165-1-7} }
Michael A. Coco. Biorthogonal systems in Banach spaces. Studia Mathematica, Tome 162 (2004) pp. 81-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm165-1-7/