Envelope functions and asymptotic structures in Banach spaces
Bünyamin Sarı
Studia Mathematica, Tome 162 (2004), p. 283-306 / Harvested from The Polish Digital Mathematics Library

We introduce a notion of disjoint envelope functions to study asymptotic structures of Banach spaces. The main result gives a new characterization of asymptotic-p spaces in terms of the p-behavior of “disjoint-permissible” vectors of constant coefficients. Applying this result to Tirilman spaces we obtain a negative solution to a conjecture of Casazza and Shura. Further investigation of the disjoint envelopes leads to a finite-representability result in the spirit of the Maurey-Pisier theorem.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:285087
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-3-6,
     author = {B\"unyamin Sar\i },
     title = {Envelope functions and asymptotic structures in Banach spaces},
     journal = {Studia Mathematica},
     volume = {162},
     year = {2004},
     pages = {283-306},
     zbl = {1075.46008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-3-6}
}
Bünyamin Sarı. Envelope functions and asymptotic structures in Banach spaces. Studia Mathematica, Tome 162 (2004) pp. 283-306. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-3-6/