A semigroup analogue of the Fonf-Lin-Wojtaszczyk ergodic characterization of reflexive Banach spaces with a basis
Delio Mugnolo
Studia Mathematica, Tome 162 (2004), p. 243-251 / Harvested from The Polish Digital Mathematics Library

In analogy to a recent result by V. Fonf, M. Lin, and P. Wojtaszczyk, we prove the following characterizations of a Banach space X with a basis. (i) X is finite-dimensional if and only if every bounded, uniformly continuous, mean ergodic semigroup on X is uniformly mean ergodic. (ii) X is reflexive if and only if every bounded strongly continuous semigroup is mean ergodic if and only if every bounded uniformly continuous semigroup on X is mean ergodic.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:284780
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-3-3,
     author = {Delio Mugnolo},
     title = {A semigroup analogue of the Fonf-Lin-Wojtaszczyk ergodic characterization of reflexive Banach spaces with a basis},
     journal = {Studia Mathematica},
     volume = {162},
     year = {2004},
     pages = {243-251},
     zbl = {1067.47011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-3-3}
}
Delio Mugnolo. A semigroup analogue of the Fonf-Lin-Wojtaszczyk ergodic characterization of reflexive Banach spaces with a basis. Studia Mathematica, Tome 162 (2004) pp. 243-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-3-3/