In analogy to a recent result by V. Fonf, M. Lin, and P. Wojtaszczyk, we prove the following characterizations of a Banach space X with a basis. (i) X is finite-dimensional if and only if every bounded, uniformly continuous, mean ergodic semigroup on X is uniformly mean ergodic. (ii) X is reflexive if and only if every bounded strongly continuous semigroup is mean ergodic if and only if every bounded uniformly continuous semigroup on X is mean ergodic.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-3-3, author = {Delio Mugnolo}, title = {A semigroup analogue of the Fonf-Lin-Wojtaszczyk ergodic characterization of reflexive Banach spaces with a basis}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {243-251}, zbl = {1067.47011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-3-3} }
Delio Mugnolo. A semigroup analogue of the Fonf-Lin-Wojtaszczyk ergodic characterization of reflexive Banach spaces with a basis. Studia Mathematica, Tome 162 (2004) pp. 243-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-3-3/