Unconditionality of general Franklin systems in Lp[0,1], 1 < p < ∞
Gegham G. Gevorkyan ; Anna Kamont
Studia Mathematica, Tome 162 (2004), p. 161-204 / Harvested from The Polish Digital Mathematics Library

By a general Franklin system corresponding to a dense sequence = (tₙ, n ≥ 0) of points in [0,1] we mean a sequence of orthonormal piecewise linear functions with knots , that is, the nth function of the system has knots t₀, ..., tₙ. The main result of this paper is that each general Franklin system is an unconditional basis in Lp[0,1], 1 < p < ∞.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:284613
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-2-4,
     author = {Gegham G. Gevorkyan and Anna Kamont},
     title = {Unconditionality of general Franklin systems in $L^{p}[0,1]$, 1 < p < $\infty$},
     journal = {Studia Mathematica},
     volume = {162},
     year = {2004},
     pages = {161-204},
     zbl = {1056.42022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-2-4}
}
Gegham G. Gevorkyan; Anna Kamont. Unconditionality of general Franklin systems in $L^{p}[0,1]$, 1 < p < ∞. Studia Mathematica, Tome 162 (2004) pp. 161-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-2-4/