To each set of knots for i = 0,...,2ν and for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space of all piecewise linear and continuous functions on I = [0,1] with knots and the orthogonal projection of L²(I) onto . The main result is . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-1-4, author = {Z. Ciesielski and A. Kamont}, title = {The Lebesgue constants for the Franklin orthogonal system}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {55-73}, zbl = {1056.42021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-1-4} }
Z. Ciesielski; A. Kamont. The Lebesgue constants for the Franklin orthogonal system. Studia Mathematica, Tome 162 (2004) pp. 55-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-1-4/