Common zero sets of equivalent singular inner functions
Keiji Izuchi
Studia Mathematica, Tome 162 (2004), p. 231-255 / Harvested from The Polish Digital Mathematics Library

Let μ and λ be bounded positive singular measures on the unit circle such that μ ⊥ λ. It is proved that there exist positive measures μ₀ and λ₀ such that μ₀ ∼ μ, λ₀ ∼ λ, and |ψμ|<1|ψλ|<1=, where ψμ is the associated singular inner function of μ. Let (μ)=ν;νμZ(ψν) be the common zeros of equivalent singular inner functions of ψμ. Then (μ) ≠ ∅ and (μ) ∩ (λ) = ∅. It follows that μ ≪ λ if and only if (μ) ⊂ (λ). Hence (μ) is the set in the maximal ideal space of H which relates naturally to the set of measures equivalent to μ. Some basic properties of (μ) are given.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:286515
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm163-3-3,
     author = {Keiji Izuchi},
     title = {Common zero sets of equivalent singular inner functions},
     journal = {Studia Mathematica},
     volume = {162},
     year = {2004},
     pages = {231-255},
     zbl = {1074.46034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm163-3-3}
}
Keiji Izuchi. Common zero sets of equivalent singular inner functions. Studia Mathematica, Tome 162 (2004) pp. 231-255. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm163-3-3/