An operator-valued multi-variable Poisson type integral is studied. In Section 2 we obtain a new equivalent condition for the existence of a so-called regular unitary dilation of an n-tuple T=(T₁,...,Tₙ) of commuting contractions. Our development in Section 2 also contains a new proof of the classical dilation result of S. Brehmer, B. Sz.-Nagy and I. Halperin. In Section 3 we turn to the boundary behavior of this operator-valued Poisson integral. The results obtained in this section improve upon an earlier result proved by R. E. Curto and F.-H. Vasilescu in [3].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm163-3-1, author = {Anders Olofsson}, title = {Operator-valued n-harmonic measure in the polydisc}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {203-216}, zbl = {1071.47009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm163-3-1} }
Anders Olofsson. Operator-valued n-harmonic measure in the polydisc. Studia Mathematica, Tome 162 (2004) pp. 203-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm163-3-1/