We prove that if X is an infinite-dimensional Banach space with smooth partitions of unity then X and X∖ K are diffeomorphic for every weakly compact set K ⊂ X.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm162-3-4, author = {Daniel Azagra and Alejandro Montesinos}, title = {On diffeomorphisms deleting weak compacta in Banach spaces}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {229-244}, zbl = {1059.46057}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm162-3-4} }
Daniel Azagra; Alejandro Montesinos. On diffeomorphisms deleting weak compacta in Banach spaces. Studia Mathematica, Tome 162 (2004) pp. 229-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm162-3-4/