Interpolation by bivariate polynomials based on Radon projections
B. Bojanov ; I. K. Georgieva
Studia Mathematica, Tome 162 (2004), p. 141-160 / Harvested from The Polish Digital Mathematics Library

For any given set of angles θ₀ < ... < θₙ in [0,π), we show that a set of n+22 Radon projections, consisting of k parallel X-ray beams in each direction θk, k = 0, ..., n, determines uniquely algebraic polynomials of degree n in two variables.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:284687
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm162-2-3,
     author = {B. Bojanov and I. K. Georgieva},
     title = {Interpolation by bivariate polynomials based on Radon projections},
     journal = {Studia Mathematica},
     volume = {162},
     year = {2004},
     pages = {141-160},
     zbl = {1060.41003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm162-2-3}
}
B. Bojanov; I. K. Georgieva. Interpolation by bivariate polynomials based on Radon projections. Studia Mathematica, Tome 162 (2004) pp. 141-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm162-2-3/