For any given set of angles θ₀ < ... < θₙ in [0,π), we show that a set of Radon projections, consisting of k parallel X-ray beams in each direction , k = 0, ..., n, determines uniquely algebraic polynomials of degree n in two variables.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm162-2-3, author = {B. Bojanov and I. K. Georgieva}, title = {Interpolation by bivariate polynomials based on Radon projections}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {141-160}, zbl = {1060.41003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm162-2-3} }
B. Bojanov; I. K. Georgieva. Interpolation by bivariate polynomials based on Radon projections. Studia Mathematica, Tome 162 (2004) pp. 141-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm162-2-3/