For a given linear operator T in a complex Banach space X and α ∈ ℂ with ℜ (α) > 0, we define the nth Cesàro mean of order α of the powers of T by . For α = 1, we find , the usual Cesàro mean. We give necessary and sufficient conditions for a (C,α) bounded operator to be (C,α) strongly (weakly) ergodic.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm161-2-4, author = {Elmouloudi Ed-dari}, title = {On the (C,$\alpha$) Ces\`aro bounded operators}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {163-175}, zbl = {1063.47006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm161-2-4} }
Elmouloudi Ed-dari. On the (C,α) Cesàro bounded operators. Studia Mathematica, Tome 162 (2004) pp. 163-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm161-2-4/