We prove that if a measurable domain tiles ℝ or ℝ² by translations, and if it is "close enough" to a line segment or a square respectively, then it admits a lattice tiling. We also prove a similar result for spectral sets in dimension 1, and give an example showing that there is no analogue of the tiling result in dimensions 3 and higher.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-6, author = {Mihail N. Kolountzakis and Izabella \L aba}, title = {Tiling and spectral properties of near-cubic domains}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {287-299}, zbl = {1062.52020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-6} }
Mihail N. Kolountzakis; Izabella Łaba. Tiling and spectral properties of near-cubic domains. Studia Mathematica, Tome 162 (2004) pp. 287-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-6/