Order convexity and concavity of Lorentz spaces Λp,w, 0 < p < ∞
Anna Kamińska ; Lech Maligranda
Studia Mathematica, Tome 162 (2004), p. 267-286 / Harvested from The Polish Digital Mathematics Library

We study order convexity and concavity of quasi-Banach Lorentz spaces Λp,w, where 0 < p < ∞ and w is a locally integrable positive weight function. We show first that Λp,w contains an order isomorphic copy of lp. We then present complete criteria for lattice convexity and concavity as well as for upper and lower estimates for Λp,w. We conclude with a characterization of the type and cotype of Λp,w in the case when Λp,w is a normable space.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:284451
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-5,
     author = {Anna Kami\'nska and Lech Maligranda},
     title = {Order convexity and concavity of Lorentz spaces $$\Lambda$\_{p,w}$, 0 < p < $\infty$},
     journal = {Studia Mathematica},
     volume = {162},
     year = {2004},
     pages = {267-286},
     zbl = {1057.46026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-5}
}
Anna Kamińska; Lech Maligranda. Order convexity and concavity of Lorentz spaces $Λ_{p,w}$, 0 < p < ∞. Studia Mathematica, Tome 162 (2004) pp. 267-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-5/