Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in ℝ³
E. Ferreyra ; T. Godoy ; M. Urciuolo
Studia Mathematica, Tome 162 (2004), p. 249-265 / Harvested from The Polish Digital Mathematics Library

Let φ:ℝ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let Σ = (x,φ(x)): |x| ≤ 1 and let σ be the Borel measure on Σ defined by σ(A)=BχA(x,φ(x))dx where B is the unit open ball in ℝ² and dx denotes the Lebesgue measure on ℝ². We show that the composition of the Fourier transform in ℝ³ followed by restriction to Σ defines a bounded operator from Lp(³) to Lq(Σ,dσ) for certain p,q. For m ≥ 6 the results are sharp except for some border points.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:284895
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-4,
     author = {E. Ferreyra and T. Godoy and M. Urciuolo},
     title = {Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in $\mathbb{R}$$^3$},
     journal = {Studia Mathematica},
     volume = {162},
     year = {2004},
     pages = {249-265},
     zbl = {1045.42002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-4}
}
E. Ferreyra; T. Godoy; M. Urciuolo. Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in ℝ³. Studia Mathematica, Tome 162 (2004) pp. 249-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-4/