Let φ:ℝ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let Σ = (x,φ(x)): |x| ≤ 1 and let σ be the Borel measure on Σ defined by where B is the unit open ball in ℝ² and dx denotes the Lebesgue measure on ℝ². We show that the composition of the Fourier transform in ℝ³ followed by restriction to Σ defines a bounded operator from to for certain p,q. For m ≥ 6 the results are sharp except for some border points.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-4, author = {E. Ferreyra and T. Godoy and M. Urciuolo}, title = {Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in $\mathbb{R}$$^3$}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {249-265}, zbl = {1045.42002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-4} }
E. Ferreyra; T. Godoy; M. Urciuolo. Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in ℝ³. Studia Mathematica, Tome 162 (2004) pp. 249-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-4/