Let A be a Banach *-algebra with an identity, continuous involution, center Z and set of self-adjoint elements Σ. Let h ∈ Σ. The set of v ∈ Σ such that (h + iv)ⁿ is normal for no positive integer n is dense in Σ if and only if h ∉ Z. The case where A has no identity is also treated.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-1, author = {B. Yood}, title = {Non-normal elements in Banach *-algebras}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {201-204}, zbl = {1062.46042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-1} }
B. Yood. Non-normal elements in Banach *-algebras. Studia Mathematica, Tome 162 (2004) pp. 201-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-3-1/