Given a locally compact abelian group G with a measurable weight ω, it is shown that the Beurling algebra L¹(G,ω) admits either exactly one uniform norm or infinitely many uniform norms, and that L¹(G,ω) admits exactly one uniform norm iff it admits a minimum uniform norm.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-2-5, author = {S. J. Bhatt and H. V. Dedania}, title = {Beurling algebras and uniform norms}, journal = {Studia Mathematica}, volume = {162}, year = {2004}, pages = {179-183}, zbl = {1050.43002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-2-5} }
S. J. Bhatt; H. V. Dedania. Beurling algebras and uniform norms. Studia Mathematica, Tome 162 (2004) pp. 179-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-2-5/