Given a locally compact abelian group G with a measurable weight ω, it is shown that the Beurling algebra L¹(G,ω) admits either exactly one uniform norm or infinitely many uniform norms, and that L¹(G,ω) admits exactly one uniform norm iff it admits a minimum uniform norm.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-2-5,
author = {S. J. Bhatt and H. V. Dedania},
title = {Beurling algebras and uniform norms},
journal = {Studia Mathematica},
volume = {162},
year = {2004},
pages = {179-183},
zbl = {1050.43002},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-2-5}
}
S. J. Bhatt; H. V. Dedania. Beurling algebras and uniform norms. Studia Mathematica, Tome 162 (2004) pp. 179-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-2-5/