Two operator-valued Fourier multiplier theorems for Hölder spaces are proved, one periodic, the other on the line. In contrast to the -situation they hold for arbitrary Banach spaces. As a consequence, maximal regularity in the sense of Hölder can be characterized by simple resolvent estimates of the underlying operator.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-1-2,
author = {Wolfgang Arendt and Charles Batty and Shangquan Bu},
title = {Fourier multipliers for H\"older continuous functions and maximal regularity},
journal = {Studia Mathematica},
volume = {162},
year = {2004},
pages = {23-51},
zbl = {1073.42005},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-1-2}
}
Wolfgang Arendt; Charles Batty; Shangquan Bu. Fourier multipliers for Hölder continuous functions and maximal regularity. Studia Mathematica, Tome 162 (2004) pp. 23-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-1-2/