Fourier multipliers for Hölder continuous functions and maximal regularity
Wolfgang Arendt ; Charles Batty ; Shangquan Bu
Studia Mathematica, Tome 162 (2004), p. 23-51 / Harvested from The Polish Digital Mathematics Library

Two operator-valued Fourier multiplier theorems for Hölder spaces are proved, one periodic, the other on the line. In contrast to the Lp-situation they hold for arbitrary Banach spaces. As a consequence, maximal regularity in the sense of Hölder can be characterized by simple resolvent estimates of the underlying operator.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:284924
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-1-2,
     author = {Wolfgang Arendt and Charles Batty and Shangquan Bu},
     title = {Fourier multipliers for H\"older continuous functions and maximal regularity},
     journal = {Studia Mathematica},
     volume = {162},
     year = {2004},
     pages = {23-51},
     zbl = {1073.42005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-1-2}
}
Wolfgang Arendt; Charles Batty; Shangquan Bu. Fourier multipliers for Hölder continuous functions and maximal regularity. Studia Mathematica, Tome 162 (2004) pp. 23-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm160-1-2/