On the non-equivalence of rearranged Walsh and trigonometric systems in Lp
Aicke Hinrichs ; Jörg Wenzel
Studia Mathematica, Tome 157 (2003), p. 435-451 / Harvested from The Polish Digital Mathematics Library

We consider the question of whether the trigonometric system can be equivalent to some rearrangement of the Walsh system in Lp for some p ≠ 2. We show that this question is closely related to a combinatorial problem. This enables us to prove non-equivalence for a number of rearrangements. Previously this was known for the Walsh-Paley order only.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285128
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-3-7,
     author = {Aicke Hinrichs and J\"org Wenzel},
     title = {On the non-equivalence of rearranged Walsh and trigonometric systems in $L\_{p}$
            },
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {435-451},
     zbl = {1061.42015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-3-7}
}
Aicke Hinrichs; Jörg Wenzel. On the non-equivalence of rearranged Walsh and trigonometric systems in $L_{p}$
            . Studia Mathematica, Tome 157 (2003) pp. 435-451. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-3-7/