Regularization of star bodies by random hyperplane cut off
V. D. Milman ; A. Pajor
Studia Mathematica, Tome 157 (2003), p. 247-261 / Harvested from The Polish Digital Mathematics Library

We present a general result on regularization of an arbitrary convex body (and more generally a star body), which gives and extends global forms of a number of well known local facts, like the low M*-estimates, large Euclidean sections of finite volume-ratio spaces and others.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285021
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-2-6,
     author = {V. D. Milman and A. Pajor},
     title = {Regularization of star bodies by random hyperplane cut off},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {247-261},
     zbl = {1076.46008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-2-6}
}
V. D. Milman; A. Pajor. Regularization of star bodies by random hyperplane cut off. Studia Mathematica, Tome 157 (2003) pp. 247-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-2-6/