We study the extremal volume of central hyperplane sections of complex n-dimensional -balls with 0 < p ≤ 2. We show that the minimum corresponds to hyperplanes orthogonal to vectors ξ = (ξ¹,...,ξⁿ) ∈ ℂⁿ with |ξ¹| = ... = |ξⁿ|, and the maximum corresponds to hyperplanes orthogonal to vectors with only one non-zero coordinate.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-2-2, author = {Alexander Koldobsky and Marisa Zymonopoulou}, title = {Extremal sections of complex $l\_{p}$-balls, 0 < p $\leq$ 2}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {185-194}, zbl = {1053.52005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-2-2} }
Alexander Koldobsky; Marisa Zymonopoulou. Extremal sections of complex $l_{p}$-balls, 0 < p ≤ 2. Studia Mathematica, Tome 157 (2003) pp. 185-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-2-2/