Extremal sections of complex lp-balls, 0 < p ≤ 2
Alexander Koldobsky ; Marisa Zymonopoulou
Studia Mathematica, Tome 157 (2003), p. 185-194 / Harvested from The Polish Digital Mathematics Library

We study the extremal volume of central hyperplane sections of complex n-dimensional lp-balls with 0 < p ≤ 2. We show that the minimum corresponds to hyperplanes orthogonal to vectors ξ = (ξ¹,...,ξⁿ) ∈ ℂⁿ with |ξ¹| = ... = |ξⁿ|, and the maximum corresponds to hyperplanes orthogonal to vectors with only one non-zero coordinate.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284952
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-2-2,
     author = {Alexander Koldobsky and Marisa Zymonopoulou},
     title = {Extremal sections of complex $l\_{p}$-balls, 0 < p $\leq$ 2},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {185-194},
     zbl = {1053.52005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-2-2}
}
Alexander Koldobsky; Marisa Zymonopoulou. Extremal sections of complex $l_{p}$-balls, 0 < p ≤ 2. Studia Mathematica, Tome 157 (2003) pp. 185-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-2-2/