Convergence of greedy approximation I. General systems
S. V. Konyagin ; V. N. Temlyakov
Studia Mathematica, Tome 157 (2003), p. 143-160 / Harvested from The Polish Digital Mathematics Library

We consider convergence of thresholding type approximations with regard to general complete minimal systems eₙ in a quasi-Banach space X. Thresholding approximations are defined as follows. Let eₙ* ⊂ X* be the conjugate (dual) system to eₙ; then define for ε > 0 and x ∈ X the thresholding approximations as Tε(x):=jDε(x)e*j(x)ej, where Dε(x):=j:|e*j(x)|ε. We study a generalized version of Tε that we call the weak thresholding approximation. We modify the Tε(x) in the following way. For ε > 0, t ∈ (0,1) we set Dt,ε(x):=j:tε|e*j(x)|<ε and consider the weak thresholding approximations Tε,D(x):=Tε(x)+jDe*j(x)ej, DDt,ε(x). We say that the weak thresholding approximations converge to x if Tε,D(ε)(x)x as ε → 0 for any choice of D(ε)Dt,ε(x). We prove that the convergence set WTeₙ does not depend on the parameter t ∈ (0,1) and that it is a linear set. We present some applications of general results on convergence of thresholding approximations to A-convergence of both number series and trigonometric series.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285145
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-1-7,
     author = {S. V. Konyagin and V. N. Temlyakov},
     title = {Convergence of greedy approximation I. General systems},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {143-160},
     zbl = {1050.46012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-1-7}
}
S. V. Konyagin; V. N. Temlyakov. Convergence of greedy approximation I. General systems. Studia Mathematica, Tome 157 (2003) pp. 143-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-1-7/