We construct an indecomposable reflexive Banach space such that every infinite-dimensional closed subspace contains an unconditional basic sequence. We also show that every operator is of the form λI + S with S a strictly singular operator.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-1-1, author = {Spiros A. Argyros and Antonis Manoussakis}, title = {An indecomposable and unconditionally saturated Banach space}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {1-32}, zbl = {1062.46013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-1-1} }
Spiros A. Argyros; Antonis Manoussakis. An indecomposable and unconditionally saturated Banach space. Studia Mathematica, Tome 157 (2003) pp. 1-32. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-1-1/