An indecomposable and unconditionally saturated Banach space
Spiros A. Argyros ; Antonis Manoussakis
Studia Mathematica, Tome 157 (2003), p. 1-32 / Harvested from The Polish Digital Mathematics Library

We construct an indecomposable reflexive Banach space Xius such that every infinite-dimensional closed subspace contains an unconditional basic sequence. We also show that every operator T(Xius) is of the form λI + S with S a strictly singular operator.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284688
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-1-1,
     author = {Spiros A. Argyros and Antonis Manoussakis},
     title = {An indecomposable and unconditionally saturated Banach space},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {1-32},
     zbl = {1062.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-1-1}
}
Spiros A. Argyros; Antonis Manoussakis. An indecomposable and unconditionally saturated Banach space. Studia Mathematica, Tome 157 (2003) pp. 1-32. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-1-1/