We prove the existence of the density of states of a local, self-adjoint operator determined by a coercive, almost periodic quadratic form on . The support of the density coincides with the spectrum of the operator in .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-4, author = {Andrzej Krupa}, title = {The density of states of a local almost periodic operator in $$\mathbb{R}$^{$\nu$}$ }, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {227-237}, zbl = {1052.47043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-4} }
Andrzej Krupa. The density of states of a local almost periodic operator in $ℝ^{ν}$ . Studia Mathematica, Tome 157 (2003) pp. 227-237. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-4/