The density of states of a local almost periodic operator in ν
Andrzej Krupa
Studia Mathematica, Tome 157 (2003), p. 227-237 / Harvested from The Polish Digital Mathematics Library

We prove the existence of the density of states of a local, self-adjoint operator determined by a coercive, almost periodic quadratic form on Hm(ν). The support of the density coincides with the spectrum of the operator in L²(ν).

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284540
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-4,
     author = {Andrzej Krupa},
     title = {The density of states of a local almost periodic operator in $$\mathbb{R}$^{$\nu$}$
            },
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {227-237},
     zbl = {1052.47043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-4}
}
Andrzej Krupa. The density of states of a local almost periodic operator in $ℝ^{ν}$
            . Studia Mathematica, Tome 157 (2003) pp. 227-237. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-4/