Let T be a Fredholm operator on a Banach space. Say T is rootless if there is no bounded linear operator S and no positive integer m ≥ 2 such that . Criteria and examples of rootlessness are given. This leads to a study of ascent and descent whether finite or infinite for T with examples having infinite ascent and descent.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-3, author = {Bertram Yood}, title = {Ascent, descent and roots of Fredholm operators}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {219-226}, zbl = {1062.47020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-3} }
Bertram Yood. Ascent, descent and roots of Fredholm operators. Studia Mathematica, Tome 157 (2003) pp. 219-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-3/