It is shown that if A is a bounded linear operator on a complex Hilbert space, then , where w(A) and ||A|| are the numerical radius and the usual operator norm of A, respectively. An application of this inequality is given to obtain a new estimate for the numerical radius of the Frobenius companion matrix. Bounds for the zeros of polynomials are also given.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-1-2, author = {Fuad Kittaneh}, title = {A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {11-17}, zbl = {1113.15302}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-1-2} }
Fuad Kittaneh. A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Mathematica, Tome 157 (2003) pp. 11-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-1-2/