A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix
Fuad Kittaneh
Studia Mathematica, Tome 157 (2003), p. 11-17 / Harvested from The Polish Digital Mathematics Library

It is shown that if A is a bounded linear operator on a complex Hilbert space, then w(A)1/2(||A||+||A²||1/2), where w(A) and ||A|| are the numerical radius and the usual operator norm of A, respectively. An application of this inequality is given to obtain a new estimate for the numerical radius of the Frobenius companion matrix. Bounds for the zeros of polynomials are also given.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285150
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-1-2,
     author = {Fuad Kittaneh},
     title = {A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {11-17},
     zbl = {1113.15302},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-1-2}
}
Fuad Kittaneh. A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Mathematica, Tome 157 (2003) pp. 11-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-1-2/