Relative Fatou theorem for harmonic functions of rotation invariant stable processes in smooth domains
Krzysztof Bogdan ; Bartłomiej Dyda
Studia Mathematica, Tome 157 (2003), p. 83-96 / Harvested from The Polish Digital Mathematics Library

For C1,1 domains we give exact asymptotics near the domain’s boundary for the Green function and Martin kernel of the rotation invariant α-stable Lévy process. We also obtain a relative Fatou theorem for harmonic functions of the stable process.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284644
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm157-1-7,
     author = {Krzysztof Bogdan and Bart\l omiej Dyda},
     title = {Relative Fatou theorem for harmonic functions of rotation invariant stable processes in smooth domains},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {83-96},
     zbl = {1048.31006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm157-1-7}
}
Krzysztof Bogdan; Bartłomiej Dyda. Relative Fatou theorem for harmonic functions of rotation invariant stable processes in smooth domains. Studia Mathematica, Tome 157 (2003) pp. 83-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm157-1-7/