For domains we give exact asymptotics near the domain’s boundary for the Green function and Martin kernel of the rotation invariant α-stable Lévy process. We also obtain a relative Fatou theorem for harmonic functions of the stable process.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm157-1-7, author = {Krzysztof Bogdan and Bart\l omiej Dyda}, title = {Relative Fatou theorem for harmonic functions of rotation invariant stable processes in smooth domains}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {83-96}, zbl = {1048.31006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm157-1-7} }
Krzysztof Bogdan; Bartłomiej Dyda. Relative Fatou theorem for harmonic functions of rotation invariant stable processes in smooth domains. Studia Mathematica, Tome 157 (2003) pp. 83-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm157-1-7/