We characterize affine mappings on the unit disk and on rectangles by module conditions. The main result generalizes the classic Schwarz lemma. As an application, we give a sufficient condition for a K-quasiconformal mapping on a Riemann surface to be a Teichmüller mapping.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm157-1-6,
author = {Zhiguo Chen},
title = {Geometric characterization for affine mappings and Teichm\"uller mappings},
journal = {Studia Mathematica},
volume = {157},
year = {2003},
pages = {71-82},
zbl = {1020.30016},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm157-1-6}
}
Zhiguo Chen. Geometric characterization for affine mappings and Teichmüller mappings. Studia Mathematica, Tome 157 (2003) pp. 71-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm157-1-6/