S'-convolvability with the Poisson kernel in the Euclidean case and the product domain case
Josefina Alvarez ; Martha Guzmán-Partida ; Urszula Skórnik
Studia Mathematica, Tome 157 (2003), p. 143-163 / Harvested from The Polish Digital Mathematics Library

We obtain real-variable and complex-variable formulas for the integral of an integrable distribution in the n-dimensional case. These formulas involve specific versions of the Cauchy kernel and the Poisson kernel, namely, the Euclidean version and the product domain version. We interpret the real-variable formulas as integrals of S’-convolutions. We characterize those tempered distribution that are S’-convolvable with the Poisson kernel in the Euclidean case and the product domain case. As an application of our results we prove that every integrable distribution on ℝⁿ has a harmonic extension to the upper half-space n+1.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284673
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-2-5,
     author = {Josefina Alvarez and Martha Guzm\'an-Partida and Urszula Sk\'ornik},
     title = {S'-convolvability with the Poisson kernel in the Euclidean case and the product domain case},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {143-163},
     zbl = {1023.46041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-2-5}
}
Josefina Alvarez; Martha Guzmán-Partida; Urszula Skórnik. S'-convolvability with the Poisson kernel in the Euclidean case and the product domain case. Studia Mathematica, Tome 157 (2003) pp. 143-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-2-5/