Let G be a locally compact abelian group, M(G) the convolution measure algebra, and X a Banach M(G)-module under the module multiplication μ ∘ x, μ ∈ M(G), x ∈ X. We show that if X is an essential L¹(G)-module, then for each measure μ in reg(M(G)), where denotes the operator in B(X) defined by , σ(·) the usual spectrum in B(X), sp(X) the hull in L¹(G) of the ideal , μ̂ the Fourier-Stieltjes transform of μ, and reg(M(G)) the largest closed regular subalgebra of M(G); reg(M(G)) contains all the absolutely continuous measures and discrete measures.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-2-1, author = {H. Sefero\u glu}, title = {A spectral mapping theorem for Banach modules}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {99-103}, zbl = {1028.46073}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-2-1} }
H. Seferoğlu. A spectral mapping theorem for Banach modules. Studia Mathematica, Tome 157 (2003) pp. 99-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-2-1/