A spectral mapping theorem for Banach modules
H. Seferoğlu
Studia Mathematica, Tome 157 (2003), p. 99-103 / Harvested from The Polish Digital Mathematics Library

Let G be a locally compact abelian group, M(G) the convolution measure algebra, and X a Banach M(G)-module under the module multiplication μ ∘ x, μ ∈ M(G), x ∈ X. We show that if X is an essential L¹(G)-module, then σ(Tμ)=μ̂(sp(X))¯ for each measure μ in reg(M(G)), where Tμ denotes the operator in B(X) defined by Tμx=μx, σ(·) the usual spectrum in B(X), sp(X) the hull in L¹(G) of the ideal IX=fL¹(G)|Tf=0, μ̂ the Fourier-Stieltjes transform of μ, and reg(M(G)) the largest closed regular subalgebra of M(G); reg(M(G)) contains all the absolutely continuous measures and discrete measures.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284829
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-2-1,
     author = {H. Sefero\u glu},
     title = {A spectral mapping theorem for Banach modules},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {99-103},
     zbl = {1028.46073},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-2-1}
}
H. Seferoğlu. A spectral mapping theorem for Banach modules. Studia Mathematica, Tome 157 (2003) pp. 99-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-2-1/