Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces
Yongsheng Han ; Dachun Yang
Studia Mathematica, Tome 157 (2003), p. 67-97 / Harvested from The Polish Digital Mathematics Library

New norms for some distributions on spaces of homogeneous type which include some fractals are introduced. Using inhomogeneous discrete Calderón reproducing formulae and the Plancherel-Pólya inequalities on spaces of homogeneous type, the authors prove that these norms give a new characterization for the Besov and Triebel-Lizorkin spaces with p, q > 1 and can be used to introduce new inhomogeneous Besov and Triebel-Lizorkin spaces with p, q ≤ 1 on spaces of homogeneous type. Moreover, atomic decompositions of these new spaces are also obtained. All the results of this paper are new even for ℝⁿ.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284986
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-1-5,
     author = {Yongsheng Han and Dachun Yang},
     title = {Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {67-97},
     zbl = {1032.42025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-1-5}
}
Yongsheng Han; Dachun Yang. Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces. Studia Mathematica, Tome 157 (2003) pp. 67-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-1-5/