Let V be the classical Volterra operator on L²(0,1), and let z be a complex number. We prove that I-zV is power bounded if and only if Re z ≥ 0 and Im z = 0, while I-zV² is power bounded if and only if z = 0. The first result yields as n → ∞, an improvement of [Py]. We also study some other related operator pencils.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-1-4, author = {Dashdondog Tsedenbayar}, title = {On the power boundedness of certain Volterra operator pencils}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {59-66}, zbl = {1028.47002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-1-4} }
Dashdondog Tsedenbayar. On the power boundedness of certain Volterra operator pencils. Studia Mathematica, Tome 157 (2003) pp. 59-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm156-1-4/