Let ℳ be a type II₁ von Neumann algebra, τ a trace in ℳ, and L²(ℳ,τ) the GNS Hilbert space of τ. If L²(ℳ,τ)₊ is the completion of the set of selfadjoint elements, then each element ξ ∈ L²(ℳ,τ)₊ gives rise to a selfadjoint unbounded operator on L²(ℳ,τ). In this note we show that the exponential exp: L²(ℳ,τ)₊ → L²(ℳ,τ), , is continuous but not differentiable. The same holds for the Cayley transform . We also show that the unitary group with the strong operator topology is not an embedded submanifold of L²(ℳ,τ), in any way which makes the product (u,w) ↦ uw () a differentiable map.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-3-5, author = {Esteban Andruchow}, title = {A nonsmooth exponential}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {265-271}, zbl = {1028.46092}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-3-5} }
Esteban Andruchow. A nonsmooth exponential. Studia Mathematica, Tome 157 (2003) pp. 265-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-3-5/