A nonsmooth exponential
Esteban Andruchow
Studia Mathematica, Tome 157 (2003), p. 265-271 / Harvested from The Polish Digital Mathematics Library

Let ℳ be a type II₁ von Neumann algebra, τ a trace in ℳ, and L²(ℳ,τ) the GNS Hilbert space of τ. If L²(ℳ,τ)₊ is the completion of the set sa of selfadjoint elements, then each element ξ ∈ L²(ℳ,τ)₊ gives rise to a selfadjoint unbounded operator Lξ on L²(ℳ,τ). In this note we show that the exponential exp: L²(ℳ,τ)₊ → L²(ℳ,τ), exp(ξ)=eiLξ, is continuous but not differentiable. The same holds for the Cayley transform C(ξ)=(Lξ-i)(Lξ+i)-1. We also show that the unitary group UL²(,τ) with the strong operator topology is not an embedded submanifold of L²(ℳ,τ), in any way which makes the product (u,w) ↦ uw (u,wU) a differentiable map.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284834
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-3-5,
     author = {Esteban Andruchow},
     title = {A nonsmooth exponential},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {265-271},
     zbl = {1028.46092},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-3-5}
}
Esteban Andruchow. A nonsmooth exponential. Studia Mathematica, Tome 157 (2003) pp. 265-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-3-5/