We prove that a biseparating map between spaces of vector-valued continuous functions is usually automatically continuous. However, we also discuss special cases when this is not true.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-3-3, author = {Jes\'us Araujo and Krzysztof Jarosz}, title = {Automatic continuity of biseparating maps}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {231-239}, zbl = {1056.46032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-3-3} }
Jesús Araujo; Krzysztof Jarosz. Automatic continuity of biseparating maps. Studia Mathematica, Tome 157 (2003) pp. 231-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-3-3/