Operator Figà-Talamanca-Herz algebras
Volker Runde
Studia Mathematica, Tome 157 (2003), p. 153-170 / Harvested from The Polish Digital Mathematics Library

Let G be a locally compact group. We use the canonical operator space structure on the spaces Lp(G) for p ∈ [1,∞] introduced by G. Pisier to define operator space analogues OAp(G) of the classical Figà-Talamanca-Herz algebras Ap(G). If p ∈ (1,∞) is arbitrary, then Ap(G)OAp(G) and the inclusion is a contraction; if p = 2, then OA₂(G) ≅ A(G) as Banach spaces, but not necessarily as operator spaces. We show that OAp(G) is a completely contractive Banach algebra for each p ∈ (1,∞), and that OAq(G)OAp(G) completely contractively for amenable G if 1 < p ≤ q ≤ 2 or 2 ≤ q ≤ p < ∞. Finally, we characterize the amenability of G through the existence of a bounded approximate identity in OAp(G) for one (or equivalently for all) p ∈ (1,∞).

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285290
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-5,
     author = {Volker Runde},
     title = {Operator Fig\`a-Talamanca-Herz algebras},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {153-170},
     zbl = {1032.47048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-5}
}
Volker Runde. Operator Figà-Talamanca-Herz algebras. Studia Mathematica, Tome 157 (2003) pp. 153-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-5/