The "Full Clarkson-Erdős-Schwartz Theorem" on the closure of non-dense Müntz spaces
Tamás Erdélyi
Studia Mathematica, Tome 157 (2003), p. 145-152 / Harvested from The Polish Digital Mathematics Library

Denote by spanf₁,f₂,... the collection of all finite linear combinations of the functions f₁,f₂,... over ℝ. The principal result of the paper is the following. Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose (λj)j=1 is a sequence of distinct positive numbers. Then span1,xλ,xλ,... is dense in C[0,1] if and only if j=1(λj)/(λj²+1)=. Moreover, if j=1(λj)/(λj²+1)<, then every function from the C[0,1] closure of span1,xλ,xλ,... can be represented as an analytic function on z ∈ ℂ ∖ (-∞, 0]: |z| < 1 restricted to (0,1). This result improves an earlier result by P. Borwein and Erdélyi stating that if j=1(λj)/(λj²+1)<, then every function from the C[0,1] closure of span1,xλ,xλ,... is in C(0,1). Our result may also be viewed as an improvement, extension, or completion of earlier results by Müntz, Szász, Clarkson, Erdős, L. Schwartz, P. Borwein, Erdélyi, W. B. Johnson, and Operstein.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:286227
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-4,
     author = {Tam\'as Erd\'elyi},
     title = {The "Full Clarkson-Erd\H os-Schwartz Theorem" on the closure of non-dense M\"untz spaces},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {145-152},
     zbl = {1016.30003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-4}
}
Tamás Erdélyi. The "Full Clarkson-Erdős-Schwartz Theorem" on the closure of non-dense Müntz spaces. Studia Mathematica, Tome 157 (2003) pp. 145-152. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-4/