A properly infinite C*-algebra has no non-zero traces. We construct properly infinite Banach *-algebras with non-zero, bounded traces, and show that there are even such algebras which are fairly "close" to the class of C*-algebras, in the sense that they can be hermitian or *-semisimple.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-2, author = {H. G. Dales and Niels Jakob Laustsen and Charles J. Read}, title = {A properly infinite Banach *-algebra with a non-zero, bounded trace}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {107-129}, zbl = {1025.46019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-2} }
H. G. Dales; Niels Jakob Laustsen; Charles J. Read. A properly infinite Banach *-algebra with a non-zero, bounded trace. Studia Mathematica, Tome 157 (2003) pp. 107-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-2/