A properly infinite Banach *-algebra with a non-zero, bounded trace
H. G. Dales ; Niels Jakob Laustsen ; Charles J. Read
Studia Mathematica, Tome 157 (2003), p. 107-129 / Harvested from The Polish Digital Mathematics Library

A properly infinite C*-algebra has no non-zero traces. We construct properly infinite Banach *-algebras with non-zero, bounded traces, and show that there are even such algebras which are fairly "close" to the class of C*-algebras, in the sense that they can be hermitian or *-semisimple.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:284571
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-2,
     author = {H. G. Dales and Niels Jakob Laustsen and Charles J. Read},
     title = {A properly infinite Banach *-algebra with a non-zero, bounded trace},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {107-129},
     zbl = {1025.46019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-2}
}
H. G. Dales; Niels Jakob Laustsen; Charles J. Read. A properly infinite Banach *-algebra with a non-zero, bounded trace. Studia Mathematica, Tome 157 (2003) pp. 107-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-2/