Let θ : ℳ → 𝓝 be a zero-product preserving linear map between algebras. We show that under some mild conditions θ is a product of a central element and an algebra homomorphism. Our result applies to matrix algebras, standard operator algebras, C*-algebras and W*-algebras.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-1-6, author = {M. A. Chebotar and W.-F. Ke and P.-H. Lee and N.-C. Wong}, title = {Mappings preserving zero products}, journal = {Studia Mathematica}, volume = {157}, year = {2003}, pages = {77-94}, zbl = {1032.46063}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-1-6} }
M. A. Chebotar; W.-F. Ke; P.-H. Lee; N.-C. Wong. Mappings preserving zero products. Studia Mathematica, Tome 157 (2003) pp. 77-94. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-1-6/