An estimation for a family of oscillatory integrals
Magali Folch-Gabayet ; James Wright
Studia Mathematica, Tome 157 (2003), p. 89-97 / Harvested from The Polish Digital Mathematics Library

Let K be a Calderón-Zygmund kernel and P a real polynomial defined on ℝⁿ with P(0) = 0. We prove that convolution with Kexp(i/P) is continuous on L²(ℝⁿ) with bounds depending only on K, n and the degree of P, but not on the coefficients of P.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:285177
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm154-1-6,
     author = {Magali Folch-Gabayet and James Wright},
     title = {An estimation for a family of oscillatory integrals},
     journal = {Studia Mathematica},
     volume = {157},
     year = {2003},
     pages = {89-97},
     zbl = {1009.42008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm154-1-6}
}
Magali Folch-Gabayet; James Wright. An estimation for a family of oscillatory integrals. Studia Mathematica, Tome 157 (2003) pp. 89-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm154-1-6/