On the directional entropy of ℤ²-actions generated by cellular automata
M. Courbage ; B. Kamiński
Studia Mathematica, Tome 151 (2002), p. 285-295 / Harvested from The Polish Digital Mathematics Library

We show that for any cellular automaton (CA) ℤ²-action Φ on the space of all doubly infinite sequences with values in a finite set A, determined by an automaton rule F=F[l,r], l,r ∈ ℤ, l ≤ r, and any Φ-invariant Borel probability measure, the directional entropy hv(Φ), v⃗= (x,y) ∈ ℝ², is bounded above by max(|zl|,|zr|)logA if zlzr0 and by |zr-zl| in the opposite case, where zl=x+ly, zr=x+ry. We also show that in the class of permutative CA-actions the bounds are attained if the measure considered is uniform Bernoulli.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284837
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-3-5,
     author = {M. Courbage and B. Kami\'nski},
     title = {On the directional entropy of $\mathbb{Z}$$^2$-actions generated by cellular automata},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {285-295},
     zbl = {1016.37006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-3-5}
}
M. Courbage; B. Kamiński. On the directional entropy of ℤ²-actions generated by cellular automata. Studia Mathematica, Tome 151 (2002) pp. 285-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-3-5/