Carleson's theorem with quadratic phase functions
Michael T. Lacey
Studia Mathematica, Tome 151 (2002), p. 249-267 / Harvested from The Polish Digital Mathematics Library

It is shown that the operator below maps Lp into itself for 1 < p < ∞. Cf(x):=supa,b|p.v.f(x-y)ei(ay²+by)dy/y|. The supremum over b alone gives the famous theorem of L. Carleson [2] on the pointwise convergence of Fourier series. The supremum over a alone is an observation of E. M. Stein [12]. The method of proof builds upon Stein’s observation and an approach to Carleson’s theorem jointly developed by the author and C. M. Thiele [7].

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:286481
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-3-3,
     author = {Michael T. Lacey},
     title = {Carleson's theorem with quadratic phase functions},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {249-267},
     zbl = {1019.42006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-3-3}
}
Michael T. Lacey. Carleson's theorem with quadratic phase functions. Studia Mathematica, Tome 151 (2002) pp. 249-267. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-3-3/