A semi-discrete Littlewood-Paley inequality
J. M. Wilson
Studia Mathematica, Tome 151 (2002), p. 207-233 / Harvested from The Polish Digital Mathematics Library

We apply a decomposition lemma of Uchiyama and results of the author to obtain good weighted Littlewood-Paley estimates for linear sums of functions satisfying reasonable decay, smoothness, and cancellation conditions. The heart of our application is a combinatorial trick treating m-fold dilates of dyadic cubes. We use our estimates to obtain new weighted inequalities for Bergman-type spaces defined on upper half-spaces in one and two parameters, extending earlier work of R. L. Wheeden and the author.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284962
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-3-1,
     author = {J. M. Wilson},
     title = {A semi-discrete Littlewood-Paley inequality},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {207-233},
     zbl = {1013.42014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-3-1}
}
J. M. Wilson. A semi-discrete Littlewood-Paley inequality. Studia Mathematica, Tome 151 (2002) pp. 207-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-3-1/