Diameter-preserving maps on various classes of function spaces
Bruce A. Barnes ; Ashoke K. Roy
Studia Mathematica, Tome 151 (2002), p. 127-145 / Harvested from The Polish Digital Mathematics Library

Under some mild assumptions, non-linear diameter-preserving bijections between (vector-valued) function spaces are characterized with the help of a well-known theorem of Ulam and Mazur. A necessary and sufficient condition for the existence of a diameter-preserving bijection between function spaces in the complex scalar case is derived, and a complete description of such maps is given in several important cases.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:285047
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-2-3,
     author = {Bruce A. Barnes and Ashoke K. Roy},
     title = {Diameter-preserving maps on various classes of function spaces},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {127-145},
     zbl = {1028.46053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-2-3}
}
Bruce A. Barnes; Ashoke K. Roy. Diameter-preserving maps on various classes of function spaces. Studia Mathematica, Tome 151 (2002) pp. 127-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm153-2-3/