The topological entropy versus level sets for interval maps
Jozef Bobok
Studia Mathematica, Tome 151 (2002), p. 249-261 / Harvested from The Polish Digital Mathematics Library

We answer affirmatively Coven's question [PC]: Suppose f: I → I is a continuous function of the interval such that every point has at least two preimages. Is it true that the topological entropy of f is greater than or equal to log 2?

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284713
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm152-3-4,
     author = {Jozef Bobok},
     title = {The topological entropy versus level sets for interval maps},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {249-261},
     zbl = {1043.37029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm152-3-4}
}
Jozef Bobok. The topological entropy versus level sets for interval maps. Studia Mathematica, Tome 151 (2002) pp. 249-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm152-3-4/