We consider a large class of convex circular domains in which contains the oval domains and minimal balls. We compute their Bergman and Szegő kernels. Our approach relies on the analysis of some proper holomorphic liftings of our domains to some suitable manifolds.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm152-2-5, author = {E. H. Youssfi}, title = {Proper holomorphic liftings and new formulas for the Bergman and Szeg\H o kernels}, journal = {Studia Mathematica}, volume = {151}, year = {2002}, pages = {161-186}, zbl = {1013.32003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm152-2-5} }
E. H. Youssfi. Proper holomorphic liftings and new formulas for the Bergman and Szegő kernels. Studia Mathematica, Tome 151 (2002) pp. 161-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm152-2-5/