Curved thin domains and parabolic equations
M. Prizzi ; M. Rinaldi ; K. P. Rybakowski
Studia Mathematica, Tome 151 (2002), p. 109-140 / Harvested from The Polish Digital Mathematics Library

Consider the family uₜ = Δu + G(u), t > 0, xΩε, νεu=0, t > 0, xΩε, (Eε) of semilinear Neumann boundary value problems, where, for ε > 0 small, the set Ωε is a thin domain in l, possibly with holes, which collapses, as ε → 0⁺, onto a (curved) k-dimensional submanifold of l. If G is dissipative, then equation (Eε) has a global attractor ε. We identify a “limit” equation for the family (Eε), prove convergence of trajectories and establish an upper semicontinuity result for the family ε as ε → 0⁺.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:286445
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm151-2-2,
     author = {M. Prizzi and M. Rinaldi and K. P. Rybakowski},
     title = {Curved thin domains and parabolic equations},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {109-140},
     zbl = {0999.35005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm151-2-2}
}
M. Prizzi; M. Rinaldi; K. P. Rybakowski. Curved thin domains and parabolic equations. Studia Mathematica, Tome 151 (2002) pp. 109-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm151-2-2/