Permanence of moment estimates for p-products of convex bodies
Ulrich Brehm ; Hendrik Vogt ; Jürgen Voigt
Studia Mathematica, Tome 151 (2002), p. 243-260 / Harvested from The Polish Digital Mathematics Library

It is shown that two inequalities concerning second and fourth moments of isotropic normalized convex bodies in ℝⁿ are permanent under forming p-products. These inequalities are connected with a concentration of mass property as well as with a central limit property. An essential tool are certain monotonicity properties of the Γ-function.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:284570
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-3-3,
     author = {Ulrich Brehm and Hendrik Vogt and J\"urgen Voigt},
     title = {Permanence of moment estimates for p-products of convex bodies},
     journal = {Studia Mathematica},
     volume = {151},
     year = {2002},
     pages = {243-260},
     zbl = {1010.52002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-3-3}
}
Ulrich Brehm; Hendrik Vogt; Jürgen Voigt. Permanence of moment estimates for p-products of convex bodies. Studia Mathematica, Tome 151 (2002) pp. 243-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm150-3-3/